# GEMS (Geostationary Environment Monitoring Spectrometer) Instrument Requirements and Issues in the Instrument Design

Seunghoon Lee & Sang-Soon Yong Korea Aerospace Research Institute



### Agenda

- Introduction
- GEMS Requirements
  - Operational Requirements
  - Performance Requirements
  - Interface Requirements
- Issues in the instrument design
  - I/F between S/C and GEMS
  - Radiation Effect
  - GSD Improvement
  - Higher Spectral Resolution
  - Integration Time
  - SNR Analysis
- Summary



### Introduction

- **Overall Scientific Requirements** 
  - Monitoring of Environmental Gases
    - O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, HCHO, Aerosol
  - Around Korean peninsula in Eastern Asia
  - **Instrument Requirements** 
    - Based on the User Requirement Discussion meeting on April 16 2009
    - Inquired for the possibility of GSD enhancement and Higher spectral resolution in early 2010



## **Instrument Requirements**



### **Operational Requirements**

### Lifetime and Reliability

- [R-010] lifetime : <u>7 years</u> (TBC)
- [R-020] reliability : 0.85 (TBC)

### **Mission Scenario**

- [R-050] GEMS orbital position : between <u>116°E & 138°E</u> (TBC)
- [R-060] Target area : <u>5000 km</u> (N/S) × <u>5000 km</u> (E/W) by the imaging instrument at nadir view
  - \* Region of interest suggested
  - NS region : from 55°N to 5°S
  - EW region : from 75°E to 145°E
- [R-070] duty cycle : <u>8 images</u> during daytime
- [R-080] imaging time : <u>1 hour</u> (TBC)



### **Performance Requirements**

### Geometric requirements

- [R-100] GSD : <u>2.5 km</u> (N/S) × <u>7.5 km</u> (E/W) at nadir
- Spectral requirements
  - [R-200] continuous spectral channels from 300 to 500 nm
  - [R-210] spectral resolution :  $\Delta\lambda = 0.8 \text{ nm}$  (TBC)
  - [R-220] spectral template (FWHM)  $\approx$  3 pixels
  - [R-230] new req. item of the spectral sampling distance should be added





### Performance Requirements (cont'd)

### Radiometric requirements

[R-300] input radiance level

| Spectral range | Nominal    | Maximum     | Saturation  |
|----------------|------------|-------------|-------------|
| [nm]           | Radiance   | Radiance    | Radiance    |
|                | (Lnom)     | (Lmax)      | (Lsat)      |
| 300-315 (TBC)  | 16.2 (TBC) | 41.4 (TBC)  | 43.5 (TBC)  |
| 315-325 (TBC)  | 22.2 (TBC) | 91.3 (TBC)  | 95.9 (TBC)  |
| 325-335 (TBC)  | 33.9 (TBC) | 132.4 (TBC) | 139.0 (TBC) |
| 335-357 (TBC)  | 32.5 (TBC) | 120.6 (TBC) | 126.7 (TBC) |
| 357-423 (TBC)  | 28.8 (TBC) | 123.1 (TBC) | 129.2 (TBC) |
| 423-451 (TBC)  | 28.4 (TBC) | 105.1 (TBC) | 110.3 (TBC) |
| 451-500 (TBC)  | 20.9 (TBC) | 92.2 (TBC)  | 96.8 (TBC)  |

Spectral radiance values are W.m-2.sr-1.µm-1

- [R-350] SNR : <u>720</u> (TBC) over the range of nominal radiance at 320 nm (TBC) and <u>1500</u> (TBC) over the range of nominal radiance at 430 nm (TBC)
- [R-370] absolute radiometric accuracy : 4 % (TBC)
- [R-400] image data quantization : <u>12 bits</u> (TBC)
- Spatial performance requirements
  - [R-450] MTF at GEMS level : <u>0.3</u> (TBC)



### **Interface Requirements**

### Mechanical interfaces

- [R-700] GEMS accommodation on +Zs face of satellite
- [R-710] volume  $\leq 800$ mm (Xs), <u>1200</u>mm (Ys), <u>700</u>mm (Zs)
- [R-750] mass ≤ <u>110 kg</u>
- Thermal interfaces
  - [R-800] satellite interface heat flux : TBD W
  - [R-810] satellite interface temperature range : TBD
  - Electrical interfaces
    - [R-900] satellite input regulated voltage : TBD V
    - [R-910] max power demand : <u>100 W</u> peak (TBC)
    - [R-920] data rate : <u>10 Mbps</u> (TBC)



## **Issues in the Instrument Design**



#### **GEMS Interface Configuration (in-orbit)**



tower withing of

#### **GEMS Interface Configuration (Launch)**





11

### **Radiation Effects**

12

# At GEO, outer radiation belt is the main source of trapped particles.

 Approximately 1 Grad(Si) of total dose is expected without the shielding (10 years analysis).

| Al 5mm<br>shielding | GEO (10yr) | LEO (5yr) |
|---------------------|------------|-----------|
| TID (Si)            | 56.6 krad  | 2.3 krad  |

- Trapped electrons are more dominant than trapped protons.
  - Low energy electrons are the cause of electrostatic discharging.<sup>8</sup>
  - Unlike protons, the shielding is much more effective for attenuating electrons.



### **GSD Improvement**

- GSD req. was asked to be enhanced from 5Km (N/S) \* 15Km (E/W) to 2.5 km (N/S) × 7.5 km (E/W) with same swath width and to check the implementation possibility
  - Possible solution and results
    - $\checkmark$  two axis scanning  $\rightarrow$  longer imaging time
    - ✓ Applying two detectors  $\rightarrow$  same imaging time
  - Use of two detectors in along direction (N-S) considering the imaging time
  - Possible to implement with some impact, but still has some difficulties: how to overcome the gap between detectors
  - → The GSD of 2.5 km (N/S) × 7.5 km (E/W) is defined at nadir, while it should be worse at the edge of the field of view



### **Higher Spectral Resolution**

Higher spectral resolution req. was inquired for the possibility : from  $\Delta\lambda = 0.8$  nm to  $\Delta\lambda = 0.4$  nm

- Possible solution and results
  - Applying two detectors in the spectral direction
    - → Drastic change in the design and budget violation
  - Applying totally new spectrometer with new grating of higher resolving power in a new optical design
    - → No proven technology

#### ➔ Not possible for the implementation without major impact



### Integration Time req.

- The allocated imaging time is one hour at maximum, in which the integration and the data transmission should be completed.
- If GEMS images longer than 30 minutes, it may be a jitter disturbance source onto the other payload in a platform.

### $\rightarrow$

- The idea of two axis scanning by 1K×1K detector case is hard to be a solution
- Possible in case of using two 1K×1K detectors or one 2K×1K detector in along direction (N-S)
- If the imaging time lasts a little longer (37 min. e.g.) then the jitter condition should be revisited for the accommodation



### SNR Analysis Results (1/2)

# SNR was analyzed using provided input radiance with the assumption of hybrid detector design

| Parameter                | Value            |
|--------------------------|------------------|
| Orbit altitude           | Geostationary    |
| Ground sampling          | 2.5 X 7.5 Km     |
| Spectral Band            | 280nm - 520nm    |
| ptical sys. Transmission | 0.3              |
| etector Qntm efficiency  | See the graph    |
| Pixel size               | 18 µm            |
| F#                       | 2.5              |
| Detector RMS noise       | No consideration |
| Channel noise            | No consideration |
| Quantization noise       | No consideration |
| Shot noise               | Sqrt(signal)     |



### SNR Analysis Results (2/2)

- Four(4) cases are under analysis
  - Integration time : 0.9 & 1.8 sec
  - Spectral resolution: 0.4 & 0.8 nm





### Summary

- Key requirement items for the instrument H/W fixed with GSD improved
  - Target area : 5000 km (N/S) × 5000 km (E/W) at nadir view Duty cycle : 8 images during daytime GSD : 2.5 km (N/S) × 7.5 km (E/W) at nadir
    - continuous spectral channels from 300 to 500 nm
  - Spectral resolution remains as  $\Delta\lambda$  = 0.8 nm due to H/W limitation
- Radiation effect and SNR analysis leads to the refinement of H/W
- Imaging operation concept should be finalized after the analysis on the jitter disturbance of H/W
- Requirement items with TBC or TBD attached should be finalized in order to distribute RFP document (preferred before RFI ready)

